Heterogeneous diffusion in comb and fractal grid structures
نویسندگان
چکیده
We give an exact analytical results for diffusion with a power-law position dependent diffusion coefficient along the main channel (backbone) on a comb and grid comb structures. For the mean square displacement along the backbone of the comb we obtain behavior 〈x2(t)〉 ∼ t, where α is the powerlaw exponent of the position dependent diffusion coefficient D(x) ∼ |x|α. Depending on the value of α we observe different regimes, from anomalous subdiffusion, superdiffusion, and hyperdiffusion. For the case of the fractal grid we observe the mean square displacement, which depends on the fractal dimension of the structure of the backbones, i.e., 〈x2(t)〉 ∼ t, where 0 < ν < 1 is the fractal dimension of the backbones structure. The reduced probability distribution functions for both cases are obtained by help of the Preprint submitted to Chaos Solitons & Fractals April 25, 2017 Fox H-functions.
منابع مشابه
] 5 M ar 2 01 5 Fractional diffusion on a fractal grid comb
A grid comb model is a generalization of the well known comb model, and it consists of N backbones. For N = 1 the system reduces to the comb model where subdiffusion takes place with the transport exponent 1/2. We present an exact analytical evaluation of the transport exponent of anomalous diffusion for finite and infinite number of backbones. We show that for an arbitrarily large but finite n...
متن کاملFractional diffusion on a fractal grid comb.
A grid comb model is a generalization of the well known comb model, and it consists of N backbones. For N=1 the system reduces to the comb model where subdiffusion takes place with the transport exponent 1/2. We present an exact analytical evaluation of the transport exponent of anomalous diffusion for finite and infinite number of backbones. We show that for an arbitrarily large but finite num...
متن کاملTransmission properties of one dimensional fractal structures
In this paper, the optical properties of one dimensional fractal structures are investigated. We consider six typical fractal photonic structures: the symmetric dual cantor-like fractal structure, the asymmetric dual cantor-like fractal structure, the single cantor-like fractal structure, the symmetric dual golden-section fractal structure, the asymmetric dual golden-section fractal structure a...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملComb-like models for transport along spiny dendrites
We suggest a modification of a comb model to describe anomalous transport in spiny dendrites. Geometry of the comb structure consisting of a one-dimensional backbone and lateral branches makes it possible to describe anomalous diffusion, where dynamics inside fingers corresponds to spines, while the backbone describes diffusion along dendrites. The presented analysis establishes that the fracti...
متن کامل